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Towards feedback control of entanglement
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Abstract. We provide a model to investigate feedback control of entanglement. It consists of two distant
(two-level) atoms which interact through a radiation field and becomes entangled. We then show the
possibility to stabilize such entanglement against atomic decay by means of a feedback action.

PACS. 03.67.Mn Entanglement production, characterization and manipulation – 42.50.Lc Quantum
fluctuations, quantum noise, and quantum jumps

1 Introduction

Over the last decade, the rapid development of quantum
technology has led to the possibility of continuously mon-
itoring an individual quantum system with very low noise
and manipulating it on its typical evolution time scale [1].
It is therefore natural to consider the possibility of con-
trolling individual quantum systems in real time by using
feedback. A theory of quantum-limited feedback has been
introduced by Wiseman and Milburn [2,3]. Among recent
developments we mention the feedback stabilization of the
state of a two level atom (single qubit) against amplitude
damping [4].

Because of the relevant role played by entanglement
in quantum processes, it would be straightforward to also
consider its feedback control. Here we extend the basic
idea of reference [4] to a recently proposed model [5] con-
sisting of two distant (two-level) atoms (two qubit) which
interact through a radiation field and becomes entangled.
We then show the possibility to stabilize such entangle-
ment against atomic decay by means of a feedback action.

2 The model

We consider a very simple model consisting of two two-
level atoms, 1 and 2, placed in distant cavities and inter-
acting through a radiation field in a dispersive way. The
two cavities are arranged in a cascade-like configuration
such that, given a coherent input field with amplitude A
in one of them, the output of each cavity enters the other
as depicted in Figure 1. Then, it is possible to show [5],
after eliminating the radiation fields, that the effective in-
teraction Hamiltonian for the internal degrees of the two
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Fig. 1. Schematic description of the considered set-up. Two
distinct cavities, each containing a two-level atom (1 and 2
respectively), are connected via radiation fields (solid lines).
A coherent input of amplitude A is provided in one of them.
Furthermore, L1, L2 and D1, D2 represent local operations,
namely driving fields and homodyne detection respectively. I is
the current arising from local measurements and F1, F2 indi-
cate the consequent local feedback actions (dashed lines).

atoms becomes of Ising type, namely

Hint = 2Jσ(z)
1 σ

(z)
2 , (1)

where σ(x,y,z)
1,2 indicate the usual Pauli operators. Hereafter

we shall also use σ1,2 ≡ (σ(x)
1,2 + iσ

(y)
1,2)/2. The spin-spin

coupling constant J scales as radiation pressure |A|2 and
goes to zero for negligible cavity detuning [5].

To get entanglement in an Ising model, it is necessary
to break its symmetry [6]. To this end, we consider local
laser fields applied to each atom (L1 and L2 of Fig. 1)
such that a local Hamiltonian Hdrive given by

Hdrive = ασ
(y)
1 + ασ

(y)
2 , (α ∈ R) (2)
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acts in addition to Hint. Thus, the total Hamiltonian of
the system results

Htot = Hdrive +Hint. (3)

Let us introduce the ground and excite atomic states
|g〉1,2, |e〉1,2 as eigenvectors of σ(z)

1,2 with −1 and +1 eigen-
values respectively, and η ≡ α/J . Then, the eigenvectors
of the Hamiltonian Htot read

|ψ1〉 =
η

2
√

1 + η2 +
√

1 + η2

(|g〉1|g〉2 − |e〉1|e〉2)

+i
1 +

√
1 + η2

2
√

1 + η2 +
√

1 + η2

(|e〉1|g〉2 + |g〉1|e〉2) ,

|ψ2〉 =
1√
2

(|e〉1|g〉2 − |g〉1|e〉2) ,

|ψ3〉 =
1√
2

(|g〉1|g〉2 + |e〉1|e〉2) ,

|ψ4〉 =
η

2
√

1 + η2 −
√

1 + η2

(|g〉1|g〉2 − |e〉1|e〉2)

+i
1 −

√
1 + η2

2
√

1 + η2 −
√

1 + η2

(|e〉1|g〉2 + |g〉1|e〉2) ,

(4)

with eigenvalues E1 = −2
√
α2 + J2, E2 = −2J , E3 = 2J

and E4 = 2
√
α2 + J2.

It is reasonable to consider as initial state of the
two atoms the ground state |g〉1|g〉2; then we can expand
it over the eigenstates basis (4) as

|Ψ(0)〉 ≡ |g〉1|g〉2 =
4∑

j=1

Cj |ψj〉, (5)

with

C1 = −
(
1 −

√
1 + η2

) √
1 + η2 +

√
1 + η2

2η
√

1 + η2
,

C2 = 0,

C3 =
1√
2
,

C4 =

(
1 +

√
1 + η2

)√
1 + η2 − √

1 + η2

2η
√

1 + η2
. (6)

3 System dynamics

The evolution of the state (5) under Htot gives

|Ψ(t)〉 = C1e
2iτ

√
1+η2 |ψ1〉

+C2e
−2iτ |ψ2〉

+C4e
−2iτ

√
1+η2 |ψ4〉, (7)

where we have introduced the scaled time τ = Jt.
In reference [4] it was shown that homodyne measure-

ment of the light scattered by an atom allows indirect
measurement of its spin flip operators. Then, let us con-
sider, such type of local measurements so that after com-
bining homodyne currents, the total current I(t) carries
out information about the observable O ≡ σ

(x)
1 − σ

(x)
2 . Its

variance over the state (7) is

〈Ψ(t)|O2|Ψ(t)〉 − 〈Ψ(t)|O|Ψ(t)〉2 =

2 − η2

1 + η2

[
1 − cos

(
4τ

√
1 + η2

)]
. (8)

Notice that this quantity being strictly less than 2 at
almost any time, shows the presence of correlations for
the state (7). On the other hand, in reference [5] it has
been shown that the state (7) exhibits entanglement at
almost any time. We are thus led to ascribe the correla-
tions of equation (8) to the presence of entanglement in
equation (7), though this would not generally true. Then,
we are going to consider the quantity O as a “marker”
of entanglement while characterizing the open system
dynamics.

When we include the effect of spontaneous atomic de-
cay at rate γ, the dynamics of the two distant atoms is
described by the master equation

ρ̇ = −i [Htot, ρ] + D [σ1] ρ+ D [σ2] ρ
≡ −i [Htot, ρ] + D [c+] ρ+ D [c−] ρ , (9)

where c± = (σ1 ±σ2)/
√

2 and D is the Lindblad decoher-
ence superoperator, i.e. D[a]b ≡ aba† − a†ab/2 − ba†a/2.
The following replacements J/γ → J , α/γ → α, γt → t
have been made deriving equation (9).

The steady state solution of equation (9) can be easily
found by writing the density operator in a matrix form,
in the basis {|e〉1|e〉2, |g〉1|e〉2, |e〉1|g〉2, |g〉1|g〉2}, as

ρss =




A B1 + iB2 C1 + iC2 D1 + iD2

B1 − iB2 E F1 + iF2 G1 + iG2

C1 − iC2 F1 − iF2 H I1 + iI2

D1 − iD2 G1 − iG2 I1 − iI2 L


 , (10)

while the matrix representation of the other operators (in
the same basis) comes from

σ1 =




0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0


 , σ2 =




0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0


 . (11)

By inserting these matrices in the r.h.s. of equation (9) and
equating to 0 at l.h.s. we are left with a set of 16 linear
equations from which we can calculate (together with the
normalization condition tr(ρ) = 1) all the real coefficients
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of the matrix (10), namely

A =
1
Ξ

16α4,

B1 = − 1
Ξ

8α3, B2 = 0,

C1 = − 1
Ξ

8α3, C2 = 0,

D1 =
1
Ξ

4α2, D2 =
1
Ξ

16α2J,

E =
1
Ξ

(
16α4 + 4α2

)
,

F1 =
1
Ξ

4α2, F2 = 0,

G1 = − 1
Ξ

2α(4α2 + 1), G2 = − 1
Ξ

8αJ,

H =
1
Ξ

(
16α4 + 4α2

)
,

I1 = − 1
Ξ

2α(4α2 + 1), I2 = − 1
Ξ

8αJ,

L =
1
Ξ

(
16α4 + 8α2 + 1 + 16J2

)
, (12)

with
Ξ = 64α4 + 16α2 + 1 + 16J2. (13)

4 Stationary entanglement

One can use the concurrence as measure of the degree
of entanglement between two qubit described by density
operator ρ [8]. It is defined as

C(ρ) = max {0, ξ1 − ξ2 − ξ3 − ξ4} (14)

where ξi’s are, in decreasing order, the nonnegative square
roots of the moduli of the eigenvalues of the non-Hermitian
matrix ρρ̃. Here ρ̃ is the matrix given by

ρ̃ ≡
(
σ

(y)
1 ⊗ σ

(y)
2

)
ρ∗

(
σ

(y)
1 ⊗ σ

(y)
2

)
, (15)

where ρ∗ denotes the complex conjugate.
The stationary state concurrenceC0 ≡ C(ρss) is shown

in Figure 2. It is clear that a relevant amount of entan-
glement persists at steady state only for large values of
the coupling constant, i.e. J � 1, (when the original J is
much greater than γ).

5 Feedback action

We can now think to stabilize the entanglement, i.e. to
prevent its degradation, by using a feedback action on the
driving fields (L1 and L2 of Fig. 1) accordingly to the
measured quantity O which should reveal the status of
nonclassical correlations. Then we act on the system with
a local feedback operator

F ≡ λ√
2

(
σ

(y)
1 − σ

(y)
2

)
, (16)

Fig. 2. Concurrence C0 of the steady state plotted versus the
driving strength α and the coupling constant J .

Fig. 3. Concurrence Cfb of the steady state plotted versus
the driving strength α and the coupling constant J in presence
of feedback action. For each value of α and J , the feedback
strength is chosen to be the optimal.

where λ represent the feedback strength (already scaled
by γ, i.e. λ/

√
γ → λ). The choice of F is motivated by

the fact that feedback mediated by indirect (homodyne)
measurement requires, to squeeze the variance of a vari-
able (O), a driving action on the conjugate variable [9].

The master equation (9) then becomes [3]

ρ̇ = −i [Htot, ρ] + D [c+] ρ

+D [c− − iF ] ρ− i

2

[
c†−F + Fc−, ρ

]
. (17)

In the above equation, the feedback operator F appears
in the Hamiltonian term describing the driving effect,
as well as inside the decoherence superoperator account-
ing for quantum noise carried back into the system from
measurement.

The master equation (17) can be solved at steady state
with the same method of equation (9), obtaining ρfb

ss . How-
ever, the analytical expression is quite cumbersome, hence
not reported at all. The state ρfb

ss allows us to (numer-
ically) calculate its concurrence. In particular, we have
evaluate the quantity

Cfb ≡ max
λ∈R

C(ρfb
ss ), (18)

that is shown in Figure 3. We can see that feedback im-
proves the available entanglement with respect to previous
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Fig. 4. Concurrences difference Cfb − C0 plotted versus the
driving strength α and the coupling constant J .

case (Fig. 2). Feedback seems especially powerful at small
values of J where entanglement was very fragile (it some-
how enforces the coupling effect).

To better compare the results with and without feed-
back, in Figure 4 we have shown the difference Cfb − C0.

6 Conclusion

We have shown the possibility to improve the steady state
entanglement in an open quantum system by using a feed-
back action. Although the improvement is not very high
the above result represents a proof of principle about the
possibility of controlling entanglement through feedback.
A complementary possibility to increase entanglement be-
tween atoms subject to joint measurements with feedback
has been then proposed [10].

Since our method only relies on Local Operations and
Classical Communication (LOCC), what we have obtained
is perhaps related to entanglement purification [11].

To improve the presented model one should find the
best entanglement witness [12] to measure, and then op-
timize the feedback action (operator). This can be phrased

in terms of a numerical optimization problem and is left
for future work. Moreover, since entanglement is a system
state peculiarity, other feedback procedures, like state es-
timation based feedback [13], could be more powerful.

Summarizing, although we have proved the possibility
of feedback control of entanglement, its effectiveness re-
mains difficult to quantify in nonlinear systems (like that
studied). Probably, investigations in linear systems would
be more fruitful.

The authors warmly thank H.M. Wiseman for insightful
comments.
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